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Abstract—This paper discusses the development of an agent-
based test bed permitting the integrated study of retail and
wholesale power markets operating over realistically rendered
transmission and distribution systems. A key issue to be ad-
dressed using this test bed is the dynamic effect of increased
penetration of consumer-owned distributed energy resources,
such as PV generation, particularly when coupled with increased
price-sensitivity of demand as realized through demand response,
demand dispatch, and/or price-sensitive demand bidding.

Index Terms—Distributed power generation, multiagent sys-
tems, photovoltaic generation, power distribution, power system
economics, smart grids.

I. INTRODUCTION

THIS paper reports ongoing project work on the develop-
ment of an agent-based test bed for the computational

study of electric distribution systems with high penetration of
photovoltaic (PV) panels within the context of a larger power
system. The main objective is to simulate realistic represen-
tative power distribution feeders with high fidelity (in terms
of electrical topology, household loads and smart appliances,
and environmental parameters) in order to eventually perform
detailed analyses of the integration of the bulk transmission
system (and its market operations) with price-sensitive loads
and dispersed generation at the distribution level. There is
an increased need for such a simulation tool arising from
the evolution of today’s electrical system to tomorrow’s more
advanced and “smarter” grid. In particular, this project focuses
on the modeling of a future grid that will include a significant
amount of distributed renewable energy generation, mainly
from photovoltaic panels.

The test bed is agent-based in the sense that all system
components are modeled as interacting agents whose actions
(if any) are determined by their individual objectives subject
to financial and/or physical constraints. For example, these
objectives might involve the minimization of a household’s
energy costs or the maximization of solar power harvested
from a PV panel. In this context, system-level objectives (e.g.,
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the minimization of power loss on the cables) may be achieved
via market operations, that is, not necessarily by a central
controlling authority.

The test bed is based on the seaming together of two
previously developed agent-based test beds, namely:

• AMES [1], an open-source software platform developed
by a team of researchers at Iowa State University for the
study of strategic trading in restructured wholesale power
markets with congestion managed by locational marginal
prices (LMPs).

• GridLAB-D [2], an open-source software platform devel-
oped by DOE at PNNL for the study of power distribution
systems for end-use customers with power loads arising
from a variety of modeled appliances and equipment.

The resulting integrated retail and wholesale power system
test bed will enable us to investigate a series of critical issues
for smart grid operation in a more compelling and rigorous
manner than is possible with more limited modeling efforts.
Examples of such issues include:

1) The effects of more “price-sensitive demand” on both
the economic efficiency and reliability (in terms of
supply adequacy) of power system operations. By
price-sensitive demand we are referring to three op-
tions: (i) demand response; (ii) demand dispatch; and
(iii) price-sensitive demand bidding.1

2) The ability of price-sensitive demand (in the above two
senses) to substitute effectively for reserve generation
(in particular in relation to the integration of intermittent
renewable energy resources such as PV) to permit lower
costs in terms of both operation/investment costs and
environmental damage.

3) The reduced-order modeling of aggregations of distri-
bution feeders with price-responsive loads. Such models
are required by system operators, who are not interested
in the details of the medium- and low-voltage systems.
For instance, such a model would have the form of a

1As explained at greater length in [3], “demand response” typically refers to
the top-down ability of market operators to curtail load at peak demand hours
or in emergency situations. “Demand dispatch” refers to the ability to turn
loads on or off on a continuous basis, thus enabling “generation following” as
a possible alternative to “load following.” “Price-sensitive demand bidding”
refers to the ability of buyers in restructured wholesale power markets to
submit demand bids (offers to buy) in the form of price-quantity blocks
expressing the buyers maximum willingness to pay for each successive block
of purchased energy.
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Fig. 1. Structure of the test bed.

“mapping”

P = Φ(price, weather, time of day, contract price,

consumer’s demand elasticity, . . .) (1)

that would compute the price-sensitive aggregate load
as a function of certain parameters and a household’s
contract for electric power (e.g., the contract could be for
a regulated price, or it could be for the day-ahead energy
price determined on the previous day for the particular
hour at hand).

4) Ways to reduce the computational effort required to
simulate representative distribution feeders with smart
loads.

5) Identification of voltage limit violations arising from
the operation of PV-based distributed generation, and
control strategies to ensure that the voltage constraints
are always satisfied.

6) The provision of ancillary services by the inverters of
the PV panels (and financial incentives to do so). Such
an application is the supply of reactive power by the
inverters to minimize the power loss on the distribution
cables. Optimally, the inverter’s actions (each inverter is
modeled as an agent) need to be coordinated in some
fashion. This may be achieved by a central controller, or
in a distributed fashion (using an appropriate distributed
optimization algorithm).

Section II explains the basic architecture of the proposed test
bed. The operation of the test bed is described in Section III.
An initial test case is presented in Section IV.

II. TEST BED ARCHITECTURE

As shown in Fig. 1, the first version of the test bed consists
of four main components, namely, one or more instances
of GridLAB-D (possibly running on separate computers), a
Data Management Program (DMP), a MySQL database server,
and AMES. These programs communicate via a local area
network, and can be placed on systems running different
operating systems, thus increasing overall flexibility.

The DMP has four tasks: (i) to prepare input files that define
the simulation parameters for GridLAB-D, such as the network

topology, the definition of the agents, and the time scheduling
of various model parameters; (ii) to collect simulation results
from GridLAB-D, such as the model’s dynamic states at the
end of a simulation, or power consumption data; (iii) to receive
the feeder’s price information from the database; and (iv) to
transmit load data to the database. A detailed description of
input/output files for GridLAB-D can be found in [4]. The
functionality of the DMP basically represents the communi-
cation between various components at the distribution level
(e.g., advanced meters) and entities that exist at a higher level
(e.g., transmission/distribution utilities, load serving entities,
aggregators of demand response, or aggregators of plug-in
electric vehicles).

The database contains two tables that store information
about the LMP from AMES and the load obtained from
GridLAB-D. Note that GridLAB-D is based on C/C++ and
AMES is based on Java. To ensure that communication
remains independent of operating system and programming
language, a MySQL database server has been selected, because
it provides Open Database Connectivity (ODBC) drivers and
libraries for both C/C++ and Java. In addition, the recorded
data is useful for post-processing and analysis.

III. TEST BED OPERATION

In this section, the test bed’s operation is described in more
detail. Two of the functions that are performed in AMES
(among many others) are the calculation of day-ahead LMPs
and the calculation of real-time market prices. GridLAB-D is
used to simulate a distribution feeder (modeled in significant
detail). The load that is calculated will depend on the electric-
ity price supplied by AMES, but also on the weather and other
parameters (see (1)). A high-level overview of the execution
flow diagram is depicted in Fig. 2, and described below:

1) AMES and DMP are started by the user at the beginning
of the simulation, followed by an initialization process
for the first day, D = 1.

2) AMES transmits the day-ahead (DA) LMP variation for
day D to the database server.

3) Meanwhile, DMP keeps querying the database for this
price. Once the query is successful, DMP will initiate a
series of simulations for day D. Each day is divided into
I∗ intervals, so that a real-time price can be calculated.
For example, the real-time price could be calculated
every 5 minutes, as done in ERCOT today.

4) DMP prepares the necessary input files for GridLAB-D,
and then calls an instance of GridLAB-D to simulate the
distribution feeder for the ith interval in day D. Once the
simulation is finished, the aggregate feeder load is saved
in the database.

5) AMES queries the database for the load of interval i.
Once this becomes available, the calculation of the real-
time price is triggered.

6) Steps 4)–5) are repeated until day D ends.
7) If the maximum number of days to simulate, D∗, has

not been reached, then AMES calculates the DA price
for day D + 1, and the algorithm repeats from step 2).
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Fig. 2. Execution flow of seamed AMES and GridLAB-D software.

IV. INITIAL TEST CASE

Given the fixed retail rate structure still prevalent at the retail
distribution level in most U.S. energy regions, retail energy
consumers have little incentive or opportunity to respond to
wholesale power prices. In consequence, the occurrence of
price-sensitive demand bidding by load-serving entities in
wholesale power markets remains relatively rare, usually less
than 1% of total cleared demand.

Nevertheless, policy makers and researchers are increasingly
calling for more demand response, demand dispatch, and
price-sensitive demand bidding in wholesale power markets to
achieve better market performance [3], [5], [6]. For example,
the computational experiments reported in [7] demonstrate
that the exercise of market power by generation companies
(GenCos), which can include both economic and physical
capacity withholding, is increasingly curtailed as demand bids
are varied from 100% fixed to 100% price sensitive.

In addition, it is expected that the integration of renewable
energy resources will dramatically increase over the next
few years in response to the adoption of renewable portfolio
standards (RPS) in many U.S. states or similar programs

worldwide. Demand response, demand dispatch, and price-
sensitive demand bidding could all play key roles in facil-
itating this integration at both retail and wholesale levels.
The intermittency and volatility of renewable energy sources
requires quick counterbalancing by other energy sources to
maintain system integrity. For example, if an unexpected drop
in wind power results in a price spike, this should discourage
demand that is sensitive to price and hence help to maintain
the needed balance between generation and load. Alternatively,
this situation could trigger automated curtailment or inter-
ruption of certain loads under a previously arranged demand
dispatch agreement, or a controlled shedding of load under a
demand response program managed by an Independent System
Operator (ISO).

The test bed presented here can be used to test the effects
of increased penetration of price-sensitive demand, both with
and without consumer-owned distributed energy resources.
As a first step, to facilitate model verification, a relatively
simple test case is being designed. Specifically, as shown in
Fig. 3, we are currently working to extend a generic load
bus k in AMES to include a downstream retail market. This
downstream market consists of a collection of households, all
of which have appliances, and some of which have consumer-
owned distributed energy resources in the form of PV panels
and/or Plug-in Electric Vehicles (PEV). The aggregated power
demands from this downstream retail market are connected
to wholesale power market operations at bus k through a
distribution feeder line. As previously discussed, the real-
time load and power flow on this feeder line are simulated
in GridLAB-D.

The initial test case stresses the inclusion of household-
owned roof-top PV panels, and a PV module has been devel-
oped specifically for this implementation; see the Appendix
for details on the mathematical modeling of this PV module.
Distributed generation by residential-scale wind turbines is
not considered in this initial test case, but could be added
in a future version of this software. Plug-in electric vehicles
with vehicle-to-grid capability will be incorporated in future
versions as well.

The residential load from this downstream retail market
is aggregated and commercially serviced by a single AMES
LSE. This LSE can offer residential households a variety of
contractual arrangements ranging from flat-rate pricing at a
fixed regulated rate to dynamic pricing in which wholesale
power prices are passed through to households via advanced
metering or other technology.

As depicted in Fig. 4, wholesale power prices are deter-
mined via the AMES two-settlement system in which a day-
ahead energy market and a real-time balancing market are
operated in tandem by an ISO. At the beginning of each
operating day D, the ISO receives demand bids from LSEs and
supply offers from GenCos for each hour H of the day-ahead
energy market for day D+1. At the end of each operating day
D the ISO settles all 24 hours of the day-ahead market for day
D + 1 using the LMPs determined via hourly bid/offer-based
DC optimal power flow solutions for the day-ahead market for
day D + 1.

In particular, for each hour H of day D + 1 the LSE at
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Fig. 3. Schematic depiction of initial test case for the integrated retail and
wholesale power system test bed.

Fig. 4. AMES two-settlement system managed by an ISO on a typical
operating day D. [Note: Depicted timing is from the Midwest ISO.]

bus k must pay the day-ahead LMP at bus k for all energy it
was cleared to buy during that hour as a result of its day-ahead
market demand bidding on day D. Any deviation between this
cleared demand and the actual load withdrawn at bus k by the
LSE’s retail customers during hour H of day D+1 are settled
at the real-time LMPs for bus k during hour H of day D + 1
determined via DC optimal power flow problems based on
actual load conditions.

One key issue to be examined using our initial test case is
the effect of retail contract choice on market efficiency and the
welfare of market participants. In principle, prices should con-
vey to market participants when and where to both inject and
withdraw power. Wholesale LMPs transmit these price signals

to wholesale market participants. Given retail dynamic-price
contracts involving pass-through of wholesale LMPs, retail
consumers would also receive these price signals. However, no
such price signals are transmitted to retail consumers in energy
regions in which retail consumers pay regulated fixed rates,
which is the typical situation in the U.S. today. It is conjectured
in [8] that retail restructuring permitting some degree of retail
dynamic-price contracting would increase the welfare of retail
consumers, both those with dynamic-price contracts and those
on fixed-rate contracts. We will use our test bed to investigate
this conjecture using systematic computational experiments.

A second key issue we will examine is the effect of retail
contract choice on risk sharing between an LSE and its retail
customers. Under a fixed-rate contract, all of the price risk is
borne by the LSE since the LSE buys energy at fluctuating
prices but resells this energy to its retail customers at a fixed
rate. In an attempt to compensate for this risk, a premium
charge could be included in the fixed rate. Alternatively, by
passing through wholesale prices to its retail customers, the
LSE could shift all price risk to these customers. As detailed
in [9], there is a wide range of possible retail contracts lying
between these two extremes. We will carry out computational
experiments with our test bed to investigate the risk-sharing
implications of a sampling of these retail contract forms.

A third key issue we will examine is the extent to which
the increased penetration of price-sensitive demand affects
the reliability (adequacy) of system operations. A concern
expressed by some GenCos and market operators is that a
high penetration of dynamic-price contracting at the retail level
could increase the volatility and uncertainty of load profiles,
thus reducing the ability to forecast load for system balancing
(“load following”). For example, if wholesale LMPs are passed
through to retail consumers, the result could be different
degrees of “peak shaving” by consumers anxious to avoid
high prices. The question is whether the resulting flattened
load profiles would be easier to forecast or whether LSEs
and market operators would find themselves in a “chasing
the peak” situation in which the ability to predict peak hours
with accuracy is substantially reduced. This important concern
will be thoroughly explored by means of carefully designed
computational experiments conducted using the proposed test
bed.

V. CONCLUSION

As discussed in previous sections, three distinct tasks are
being addressed in this project.

1) Development of a retail distribution module that exploits
the capabilities of GridLAB-D for simulating retail load
arising from a wide variety of appliances and equipment
as well as retail generation arising from consumer-
owned distributed energy resources such as PV panels.

2) Development of extended LSE agents in AMES able to
aggregate, service, and settle net load arising at the retail
distribution level.

3) Development of a communication system (a data man-
agement program together with a MySQL database
server) permitting back and forth communication be-
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tween AMES wholesale operations and GridLAB-D
distribution-level operations.

To our knowledge, the resulting agent-based test bed will be
the first noncommercial open-source platform permitting the
integrated study of retail and wholesale power markets oper-
ating over realistically rendered transmission and distribution
systems.

APPENDIX

MODELING OF PV MODULE

This section provides information on the mathematical
modeling of PV-based distributed generation for inclusion in
the agent-based test bed. Each house will have the option
of a roof-top PV installation. In accordance with the agent-
based modeling principle, each installation is represented as a
separate object in GridLAB-D. The inverter is assumed to be
operating in a quasi steady-state, under maximum power point
tracking control. It also has the capability to supply or absorb
reactive power from the grid, for improving the local dis-
tribution system voltage profile and reducing the distribution
system losses. The design of algorithms for determining the
appropriate reactive power compensation by the PV inverters
is the subject of ongoing work.

Previous work by other researchers has focused extensively
on high-fidelity modeling of PV panels’ voltage-current char-
acteristics [10]–[12]. Herein, the model that is needed for the
test bed is one that can quickly provide the power output as a
function of environmental factors, such as the solar irradiation
and the panel temperature. At the same time, the accuracy
should be maintained at an acceptable level. A new method
of constructing a maximum power point tracking surface is
discussed, after introducing the basic model of a PV panel.

A. PV Panel Modeling

Figure 5 shows the equivalent circuit of a single PV cell,
whose I-V characteristic is given by

I = IPV − Id − V + IRs

Rp
, (2)

where Rp and Rs are the parallel and series resistances,
perspectively, IPV is the light-generated current (directly
proportional to the sun irradiation) defined by (3), and Id is
the diode current defined by the Shockley diode equation (4).

IPV = (IPV,n + KIΔT )
G

Gn
(3)

Id = Is

[
exp

(
V + IRs

nVT

)
− 1

]
(4)

VT =
kT

q
(5)

In (3), IPV,n is the light-generated current under standard test
conditions, in which Tn = 25°C and Gn = 1000 W/m2;
ΔT = T −Tn is the difference between the actual temperature
and nominal temperature of the PV cell in Kelvin; G and
Gn are actual and nominal irradiation on the device surface
respectively in W/m2; KI is the temperature coefficient of

IPV Id Rp

Rs

I

V

Fig. 5. Single-diode model of a PV cell.

Rp Rp Rp

Rs Rs

V

I

Fig. 6. PV array model consisting of series-connected PV cells.

current in A/K. For most cases, the value of IPV,n is not
provided in the PV panel’s datasheet. However, this value is
usually approximated using the nominal short circuit current
(Isc,n) [10]–[12]. In (4), Is is the reverse bias saturation
current, (V + IRs) is the voltage across the diode, VT is the
thermal voltage defined in (5), n is the emission coefficient,
also known as the ideality factor. The emission coefficient n
varies from ca. 1 to 2 depending on the fabrication process
and semiconductor material, and in many cases is assumed to
be approximately equal to 1 [10]. In (5), k is the Boltzmann
constant, T is the absolute temperature of the PV cell, and
q is the electric charge of an electron. The above equations
completely describe the I-V characteristic of a single PV cell.

A PV array is considered to be constructed by connecting
a number Ns of PV cells in series, as shown in Fig. 6. After
manipulations, the following expression can be derived for the
I-V characteristic of a PV array:

I = (IPV,n + KIΔT )
G

Gn
−

− Is

[
exp

(
V + NsIRs

NsnVT

)
− 1

]
− V + NsIRs

NsRp
. (6)

Typically, a PV panel’s datasheet will provide the following
basic information:

1) the nominal open-circuit voltage
2) the nominal short-circuit current
3) the voltage and current at the maximum power point
4) the open-circuit voltage/temperature coefficient
5) the open-circuit current/temperature coefficient
6) the maximum output power

These parameters do not correspond directly to the ones used
in (6). However, [10] provides a methodology to approximate
these from the datasheet information.

B. Maximum Power Point Tracking Surface

The maximum power point can be determined numerically
from (6) for any given solar irradiation and panel temperature.
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It is thus possible to calculate the surface of maximum power:

Pmpp = f(G, T ) . (7)

Consider the Kyocera KC200GT solar panel as an example,
whose parameters were computed in [10]. Figure 7 shows the
maximum power point surface that was obtained. It can be
observed that the surface is almost planar but has a slight
distortion. This shape is characteristic of most PV panels.
Therefore, the following general functional expression can be
used to approximate it with reasonable accuracy:

f(G, T ) = a1 + a2T + a3G + a4T
2 + a5TG + a6G

2 . (8)

The following parameters were used to obtain the plot of
Fig. 7: a1 = −3.639, a2 = − 0.0247, a3 = 0.2728,
a4 = 0.0005847, a5 = −0.002592, a6 = 8.92 ·10−7. It should
be noted that the simulated maximum power point may differ
from the actual power produced by a PV panel due to several
factors, such as the aging of the PV cells, dirt on the PV panel
surface, and so forth.

GridLAB-D currently uses the TMY2 weather data from
the National Renewable Energy Laboratory. This data includes
solar irradiation on an hourly basis for an entire city. However,
this low temporal and spatial resolution is inadequate for the
PV modules of the test bed. A more detailed weather model
is under development, based on modeling cloud patterns and
movements [13]. In addition, a method is needed to translate
the ambient temperature that is provided by the TMY2 data to
the PV module temperature T . A widely adopted expression
is [14], [15]:

T = Ta + (NOCT − 20)
G

800
, (9)

where Ta is the ambient temperature and NOCT stands for
the Normal Operating Cell Temperature (in degrees Celsius),
a parameter which is typically provided in a PV panel’s
datasheet.
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